public class ToblersHikingFunction extends Object
Tobler's hiking function is an exponential function determining the hiking speed, taking into account the slope angle. It was formulated by Waldo Tobler. This function was estimated from empirical data of Eduard Imhof. [ Wikipedia ]
Walking speed(W): W = 6 m/s * Exp(-3.5 * Abs(dh/dx + 0.05))
The 6 m/s
is the Maximum speed achieved. This happens at angle 2.86 degrees or -5% downhill. In OTP we
want to apply this as a multiplier to the horizontal walking distance. This is done for all walkable edges in
the graph. To find the walkingtime for an edge we use the horizontal walking speed. Therefore:
Given: Vflat : Speed at 0 degrees - flat Vmax : Maximum speed (6 m/s) Vmax = C * Vflat Then: 1 C = ------------------ = 1.19 EXP(-3.5 * 0.05) And: dx = Vflat * t W = C * Vflat * EXP(-3.5 * ABS(dh/dx + 0.05)) The Horizontal walking distance multiplier(F) then becomes: 1 F = ----------------------------------- C * EXP(-3.5 * ABS(dh/dx + 0.05)) Examples: Angle | Slope % | Horizontal walking distance multiplier -------+--------------------------------------- 19,3 | 35 % | 3,41 16,7 | 30 % | 2,86 14,0 | 25 % | 2,40 11,3 | 20 % | 2,02 8,5 | 15 % | 1,69 5,7 | 10 % | 1,42 2,9 | 5 % | 1,19 0,0 | 0 % | 1,00 −2,9 | −5 % | 0,84 −5,7 | −10 % | 1,00 −8,5 | −15 % | 1,19 −11,3 | −20 % | 1,42 −14,0 | −25 % | 1,69 −16,7 | −30 % | 2,02 −19,3 | −35 % | 2,40 −21,8 | −40 % | 2,86 −24,2 | −45 % | 3,41
Constructor and Description |
---|
ToblersHikingFunction(double walkDistMultiplierMaxLimit) |
Modifier and Type | Method and Description |
---|---|
double |
calculateHorizontalWalkingDistanceMultiplier(double dx,
double dh)
Calculate a walking distance multiplier to account tor the slope penalty.
|
public ToblersHikingFunction(double walkDistMultiplierMaxLimit)
walkDistMultiplierMaxLimit
- this property is used to set a maximum limit for the horizontal walking
distance multiplier. Must be > 1.0. See the table in the class documentation
for finding reasonable values for this constant.Copyright © 2019. All rights reserved.